Joint Ditribution
Lecture_6 Joint Ditribution
Contents
1. Discrete Multivariate R.V.s2. Continuous Multivariate R.V.s
3. Covariance and Correlation
4. Multinomial Distribution
5. Multivariate Normal
6. Change of Variables
7. Convolutions
Discrete Multivariate R.V.s
-
Foundation
$$
\begin{align}
\text{CDF: } &F_{_{X,Y}}(x,y)=P(X\leq x,Y\leq y)\\
\text{PMF: } &p_{_{X,Y}}(x,y)=P(X=x,Y=y)\\
&P(X=x)=\sum_y P(X=x,Y=y)
\end{align}
$$ -
Conditional PMF
For discrete r.v.s $X$ and $Y$, the conditional PMF of $X$ given $Y=y$ is
$$
P_{X|Y}(x|y)=P(X=x|Y=y)=\frac{P(X=x,Y=y)}{P(Y=y)}.
$$
E.G
Suppose a chicken lays a random number of eggs, $N$, where
and $N\sim\operatorname{Pois}(\lambda)$. Each egg independently hatches with probability $p$ and fails to hatch with probability $q=1-p$. Let $X$ be the number of eggs that hatch and Y the number eggs that hatch and Ythe number that do not hatch, so $X+Y=N.$ What is the joint PMF of $X$ and $Y?$


Continuous Multivariate R.V.s
-
Conditional PDF Given an Event
-
The conditional PDF $f_{X|A}$ of a continuous random variable $X$, given an event $A$ with $\mathbf{P}(A)>0$, satisfies
$$
\mathbf{P}(X\in B\mid A)=\int_{B}f_{X\mid A}(x)dx.
$$ -
If $A$ is a subset of the real line with $\mathbf{P} ( X\in A) > 0, $then
$$
f_{X|X\in A}(x)=\begin{cases}
{\frac{f_{X}(x)}{\mathbf{P}(X\in A)}}&{\mathrm{if\ } x\in A,}\\{0,}&{\mathrm{otherwise}}.
\end{cases}
$$ -
Let $A_1,A_2,\ldots,A_n$ be disjoint events that form a partition of the sample space, and assume that $\mathbf{P}(A_i)>0$ for all $i$. Then,
$$
f_{X}(x)=\sum_{i=1}^{n}\mathbf{P}(A_{i})f_{X|A_{i}}(x)
$$
(a version of the total probability theorem).
-
-
Joint PDF
$$
f_{X,Y}(x,y)=\frac{\partial^2}{\partial x\partial y}F_{X,Y}(x,y).
$$ -
Marginal PDF
$$
f_X\left(x\right)=\int_{-\infty}^\infty f_{X,Y}\left(x,y\right)dy
$$
E.Gs
- The joint PDF of X and Yis given by
$$
f(x,y)=\begin{cases}\frac{12x(2-x-y)}{5}&\mathrm{if~}0<x<1,0<y<1\\
0&\mathrm{otherwise}&&\end{cases}
$$
Compute the conditional PDF of X given that $Y=y$, where $0<y<1.$

- Suppose that the joint PDF of $X$ and Yis given by
$$
f(x,y)=\begin{cases}\frac{e^{-x/y-y}}{y}&\text{if }0<x<\infty,0<y<\infty\\
0&\text{otherwise}\end{cases}
$$
Find $P \{ X>1|Y=y \} .$

- Continuous form of Bayes’ Rule and LOTP
$$
\begin{gathered}
f_{Y|X}\left(y|x\right)=\frac{f_{X|Y}\left(x|y\right)f_Y\left(y\right)}{f_X\left(x\right)}\\
f_X\left(x\right)=\int_{-\infty}^\infty f_{X|Y}\left(x|y\right)f_Y\left(y\right)dy
\end{gathered}
$$
$$
\begin{gathered}
\small\bullet \quad f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)} = \frac{f_{X|Y}(x|y)f_Y(y)}{f_X(x)}\\
\small\bullet \quad f_X(x) = \int_{-\infty}^\infty f_{X,Y}(x,y)dy = \int_{-\infty}^\infty f_{X|Y}\left(x|y\right)f_Y\left(y\right)dy
\end{gathered}
$$
E.G
A light bulb produced by the GE company is known to have an exponential distributed lifetime $Y$. However, the company has been experiencing quality control problems. On any given day, the parameter $\lambda$ of the PDF of $Y$is actually a random variable. uniformly distributed in the interval[1,3/2]. We test a ligut $\omega$ Jrd its lifetime. What we can say about the underlying parameter $\lambda?$

General Bayes’ Rule & LOTP


General Bayes’ Rule
